B.Sc. B.Ed SEM-II Examination: 2020
 Course-CC2.1

Subject: Mathematics (2D and 3D Geometry and Differential Equations-I)

Time: 2 Hours
F.M. 50
$(5 \times 10=50)$
Answer any ten questions

1. Find the equation of the tangents to the conic $x^{2}+4 x y+3 y^{2}-5 x-6 y+3=0$ which are parallel to the straight line $x+4 y=0$.
2. Perpendiculars PL, PM, PN are drawn from the point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ to the co-ordinate planes. Show that the equation of the plane LMN is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2$.
3. A plane passing through a fixed point (a, b, c) cuts the axes in A, B, C. Show that, the locus of the centre of the sphere OABC is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.
4. A plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Find the equation of the cone generated by the straight lines drawn from O to meet the circle $A B C$.
5. Find the equation of the cylinder whose generators are parallel to the straight line $\frac{x}{-1}=\frac{y}{2}=\frac{z}{3}$ and whose guiding curve is $x^{2}+y^{2}=9, z=1$.
6. Show that the value of k for which the plane $x+k y=2$ intersects the elliptic. paraboloid $\frac{x^{2}}{2}+\frac{z^{2}}{3}=y$ in (i) an ellipse, is $\mathrm{k} \neq 0, k \geq \frac{-1}{4}$, (ii) a parabola, is $k=0$.
7. Solve the following differential equation: $\left(x y^{2}-e^{\frac{1}{x^{3}}}\right) d x-x^{2} y d y=0$.
8. Show that the general solution of the equation $\frac{d y}{d x}+p y=Q$ can be written in the form of $y=k(u-v)+v$ where, k is a constant and u and v, are its two particular solutions.
9. Solve: $y\left\{\left(\frac{d y}{d x}\right)^{2}-1\right\}=\left(x^{2}-y^{2}\right) \frac{d y}{d x}$.
10. Solve, using the method of undetermind coefficients: $\left(D^{2}+4\right)=\sin 2 x$.
11. Solve: $x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-y=3 x^{3} \cos (\log x)$.
12. Solve the differential equation: $(x+a)^{2} \frac{d^{2} y}{d x^{2}}-4(x+a) \frac{d y}{d x}+6 y=x$.
